High-Order Implicit Large-Eddy Simulation for Transitional Aerodynamics Flows
نویسندگان
چکیده
This thesis presents a high-order Implicit Large-Eddy Simulation (ILES) approach for simulating transitional aerodynamic flows. The approach consists of a hybridized Discontinuous Galerkin (DG) method for the discretization of the Navier-Stokes (NS) equations and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The combination of hybridized DG methods with an efficient solution procedure leads to a high-order accurate NS solver that is competitive to alternative approaches, such as finite volume and finite difference codes, in terms of computational cost. The proposed approach is applied to transitional turbulent flows over a NACA 65-(18)10 compressor cascade and the Eppler 387 wing at Reynolds numbers up to 460,000. Grid convergence studies are presented and the required resolution to capture transition at different Reynolds numbers is investigated. Numerical results show rapid grid convergence and excellent agreement with experimental data. Focus is also placed on analyzing the structure of the boundary layer and the mechanism that causes transition to turbulence. Two-dimensional unstable modes in the form of Tollmien-Schlichting and Kevin-Helmholtz instabilities are found to be responsible for natural transition to turbulence through a laminar separation bubble. In short, this thesis aims to demonstrate the potential of high-order ILES for simulating transitional aerodynamic flows. This will be illustrated through numerical results and supported by theoretical considerations. Thesis Supervisor: Jaime Peraire Title: H.N. Slater Professor of Aeronautics and Astronautics Thesis Supervisor: Ngoc-Cuong Nguyen Title: Principal Research Scientist
منابع مشابه
Implicit large-eddy simulation of compressible flows using the Interior Embedded Discontinuous Galerkin method
We present a high-order implicit large-eddy simulation (ILES) approach for simulating transitional turbulent flows. The approach consists of an Interior Embedded Discontinuous Galerkin (IEDG) method for the discretization of the compressible Navier-Stokes equations and a parallel preconditioned Newton-GMRES solver for the resulting nonlinear system of equations. The IEDG method arises from the ...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کامل